Name ___

Practice C

For use with pages 437–444

Solve the equation. Check for extraneous solutions.

1.
$$3(x-1)^{2/3}+4=52$$
2. $2(x+4)^{1/3}+7=-9$ **3.** $-(2x+3)^{2/3}+5=1$ **4.** $\frac{1}{2}(3x-1)^{3/4}-3=1$ **5.** $\frac{1}{3}(2x+3)^{3/2}+2=-7$ **6.** $\frac{1}{3}(2x+3)^{3/2}-2=7$

Solve the equation. Check for extraneous solutions.

7. $3\sqrt{\frac{1}{2}x} - 5 + 1 = 7$	8. $4 - \sqrt{3x + 1} = 5$	9. $\frac{1}{5}\sqrt[3]{2x} - \frac{1}{2} + 3 =$
10. $\sqrt{x^2+3}-5=4$	11. $2\sqrt{x^2-1}+4=10$	12. $3\sqrt[3]{1-x^2} + 1 =$

Solve the equation. Check for extraneous solutions.

13. $\sqrt[5]{3x+7} = \sqrt[5]{2x+1}$	14. $\sqrt{\frac{2}{3}} + x = -\sqrt{2x + \frac{1}{3}}$	15. $\sqrt{x-7} = x-7$
16. $\sqrt{3x^2 - 12x + 10} = 2x - 5$	17. $\sqrt[4]{2x^2 - 1} = x$	18. $\sqrt[3]{9x+19} = x+1$
19. $\sqrt[3]{2x^2 + 14} = x - 1$	20. $\sqrt[5]{4x^3 + x^2 - 4} = x$	21. $-\sqrt{x-3} = x-5$

Solve the equation. Check for extraneous solutions.

22.	$\sqrt{x+3} = 4 - \sqrt{x}$	23. $\sqrt{x-5} = 2 + \sqrt{x}$
25.	$\sqrt{5x+1} = 3 - \sqrt{5x}$	26. $\sqrt{2x+1} = 1 + \sqrt{2x}$

- **28.** *Geometry* The lateral surface area of a cone is given by $S = \pi r \sqrt{r^2 + h^2}$. The surface area of the base of the cone is given by $B = \pi r^2$. The total surface area of a cone of radius 3 inches is 24π square inches. What is the height of the cone?
- **29.** *Geometry* A container is to be made in the shape of a cylinder with a conical top. The lateral surface areas of the cylinder and cone are $S_1 = 2\pi rh$ and $S_2 = 2\pi r\sqrt{r^2 + h^2}$. The surface area of the base of the container is $B = \pi r^2$. The height of the cylinder and cone are equal. The radius of the container is 5 inches and its total surface area is 275π square inches. Find the total height of the container.

6

-8

Algebra 2 Chapter 7 Resource Book

84