MA2A1. Students will explore exponential functions.

a. Extend properties of exponents to include all integer exponents.
b. Investigate and explain characteristics of exponential functions, including domain and range, asymptotes, zeros, intercepts, intervals of increase and decrease, rates of change, and end behavior.
c. Graph functions as transformations of $f(x)=a^{x}$.
d. Solve simple exponential equations and inequalities analytically, graphically, and by using appropriate technology.
e. Understand and use basic exponential functions as models of real phenomena.
f. Understand and recognize geometric sequences as exponential functions with domains that are sets of whole numbers.
g. Interpret the constant ratio in a geometric sequence as the base of the associated exponential function.
MA2A4. Students will explore logarithmic functions as inverses of exponential function.
c. Define logarithmic functions as inverses of exponential functions.
d. Understand and use properties of logarithms by extending laws of exponents.
e. Investigate and explain characteristics of exponential and logarithmic functions including domain and range, asymptotes, zeros, intercepts, intervals of increase and decrease, and rate of change.
f. Graph functions as transformations of $f(x)=a^{x}, f(x)=\log _{a} x, f(x)=e^{x}, f(x)=\ln x$.
g. Explore real phenomena related to exponential and logarithmic functions including half-life and doubling time.

Mon	Sept 24	$\begin{aligned} & 8.1 \& \\ & 8.2 \end{aligned}$	Exponential crowth and Decay Functions	ゆ 469 \$476	$\begin{aligned} & 21-42 \mathrm{M} 3,56-6426 \mathrm{Ib} \\ & 12-42 \mathrm{M} 3,43-4696 \end{aligned}$
Tue Wed	Sept 25 Sept 26	8.3	Vocabulary Due Journal Due The Numbere Application Problems	\$ 483	18-669Ib 68-76 लveb
Thure	Sept 27	8.4	Introduce Logarithmic Punctions	\$ 490;	16-54 even
Eri	Sept 28	8.4	8.1-8.3 Quiz Greph Logarithmic Punctions	$\begin{aligned} & \text { Page } \\ & 491 \end{aligned}$	56-76 eveb
Mon	Oct 1	8.5	Properties of Logapithms	$\begin{aligned} & \text { Page } \\ & 496 \\ & \hline \end{aligned}$	14-72 eveb
Tue	Oct 2	8.6	Properties of Logerpithms		
Wed	Oct 3	4.6	Solving Exponential and Logarithmic Equations	$\begin{aligned} & \text { Page } \\ & 505 \end{aligned}$	20-60 cveb

Thuer	Oct 4	4.8	Solve exponential apd Logapithmic Inequalities	Fapdout
Pri	Oct 5		Quiz 8.4-8.6	
Mob	Oct 8		Review for Unit Tiest	
Tue	Oct 9		Chopter 8 Unit Test Essential Questions Due Notebook Check	

Essential Questions

1. How are exponertial growth functions graphed? Give one example.
2. How are exponertial decy functions graphed? Give one example.
3. How is e used as the base of ab exponential function? Give 2 examples.
4. How are logarithmic functions evaluated? Give 2 examples.
5. How are logarithmic functions graphed? Give 1 example.
6. What are the three properties of logarithms? Give ab example of each.
7. What is the change-of-base formula? give an example of how to use it.
8. How are exponertial equations solved? Gite one example.
9. How rre togarithmic equations solved? Give one example.
10. How are logistic growth functions evaluated? Give one example.

Vocabulary

> Exponential crowth Eunction
$>$ Exponential crowth Model
$>$ Hale-bife
$>$ Exponential Decay Model
$>$ Base
> Asymptote
$>$ Growth Factor
$>$ Exponartial Decay Eunction
$>$ Decay Eactor
$>$ Notrioll Base
$>$ Logarithm of y with base b
$>$ Common Logiarithm
$>$ Noturel Logiarithn
$>$ Continuously Compornded Interest
$>$ Logarithmic Eunction
$>$ Hoerage pate of change
$>$ Properties of Logiaithams
$>$ Property of Equality for Exponential Eunctions
$>$ Property of Equality for Loçarithmic Equations
$>$ Exponential inequality in one vapiable
$>$ Logarithmic incequality in one varioble

