MA2A1. Students will explore exponential functions.

- a. Extend properties of exponents to include all integer exponents.
- **b.** Investigate and explain characteristics of exponential functions, including domain and range, asymptotes, zeros, intercepts, intervals of increase and decrease, rates of change, and end behavior.
- **c.** Graph functions as transformations of $f(x) = a^x$.
- **d.** Solve simple exponential equations and inequalities analytically, graphically, and by using appropriate technology.
- e. Understand and use basic exponential functions as models of real phenomena.
- f. Understand and recognize geometric sequences as exponential functions with domains that are sets of whole numbers.
- g. Interpret the constant ratio in a geometric sequence as the base of the associated exponential function.

MA2A4. Students will explore logarithmic functions as inverses of exponential function.

- c. Define logarithmic functions as inverses of exponential functions.
- d. Understand and use properties of logarithms by extending laws of exponents.
- e. Investigate and explain characteristics of exponential and logarithmic functions including domain and range, asymptotes, zeros, intercepts, intervals of increase and decrease, and rate of change.
- **f.** Graph functions as transformations of $f(x) = a^x$, $f(x) = \log_a x$, $f(x) = e^x$, $f(x) = \ln x$.
- **g.** Explore real phenomena related to exponential and logarithmic functions including half-life and doubling time.

Mon	Sept 24	8.1 & 8.2	Exponential Growth and Decay Functions	P 469	21 – 42 M3, 56 – 64 all
				P477	12 - 42 M3, 43 - 46 all
า้นอ	Sept				
	25	8.3	Vocabulary Due	P 483	18 - 66 <i>a</i> ll
Wed			Journal Due		
	Sept		The Number e		68 – 76 even
	26		Application Problems		
Thur	Sept 27	8.4	Introduce Logarithmic Functions	P 490;	16 – 54 even
Fri	Sept		81 – 83 Quiz	Page	
	28	8.4	Graph Logarithmic Functions	491	56 – 76 even
Mon	Oct 1	8.5	Properties of Logarithms	Page	14 – 72 even
				496	
Tue	Oct 2	8.6	Properties of Logarithms		
Wed	Oct 3	4.7	Solving Exponential and Logarithmic	Page	20 – 60 even
			Equations	505	

Thur	Oct 4	4.8	Solve exponential and Logarithmic Inequalities	Handout
Fri	Oct 5		Quiz 8.4 – 8.6	
Mon	Oct 8		Review for Unit Test	
าันe	Oct 9		Chapter 8 Unit Test Essential Questions Due Notebook Check	

Essential Questions

- 1. How are exponential growth functions graphed? Give one example.
- 2. How are exponential decay functions graphed? Give one example.
- 3. How is e used as the base of an exponential function? Give 2 examples.
- **2**. How are logarithmic functions evaluated? Give 2 examples.
- 5. How are logarithmic functions graphed? Give 1 example.
- 6. What are the three properties of logarithms? Give an example of each.
- 7. What is the change-of-base formula? Give an example of how to use it.
- 8. How are exponential equations solved? Give one example.
- 9. How are logarithmic equations solved? Give one example.
- 10. How are logistic growth functions evaluated? Give one example.

<u>Vocabulary</u>

- > Exponential Growth Function
- > Exponential Growth Model
- ≻ Half-life
- Exponential Decay Model
- ≻ Base
- > Asymptote
- > Growth Factor
- Exponential Decay Function
- Decay Factor
- ≻ Nəturəl Bəse
- Logarithm of y with base b
- Common Logarithm
- Natural Logarithm
- > Continuously Compounded Interest
- Logarithmic Function
- > Average rate of change
- > Properties of Logarithms
- > Property of Equality for Exponential Functions
- > Property of Equality for Logarithmic Equations

- > Exponential inequality in one variable
- Logarithmic inequality in one variable