Name

Chapter Test C

For use after Chapter 7

Evaluate the expr	ession witho	ut using a c	alculator.	
1. $\sqrt[3]{-125}$ 2.	27 ^{2/3}	3. $\sqrt[4]{81}$	4. $\left(\frac{1}{216}\right)^{-1/3}$	
Simplify the expr	ession. Assun	ne all varial	oles are positive.	
5. $(3^{1/2} \cdot 3^{1/3})$ 6.	$\sqrt[4]{32x^5y^4}$	7. $\left(\frac{27x^6}{8y^{12}}\right)^{2/3}$	8. $\sqrt[3]{54} + \sqrt[3]{2}$	2
Perform the indic f(x) = x - 1 and g		n and state	the domain. Let	
9. $f(x) + g(x)$		g(x)	11. $f(x) \cdot g(x)$	
12. $\frac{f(x)}{g(x)}$	13. $f(g(x))$			
Find the inverse f	unction.			
14. $4x - 2y = 8$		15. $f(x) =$	$x^2 + 5; x \ge 0$	
16. $f(x) = (x - 7)^{1/3}$				
Graph the functio 17. $f(x) = 4(\frac{1}{2})^{x}$	n. Then state	the domai 18. $f(x) =$	-	
y 1 1 1 1				-
19. $f(x) = \sqrt[3]{x+2}$	+ 1			
	xy			

 Answers

 1.

 2.

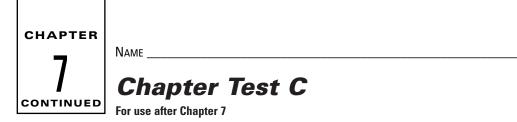
 3.

 4.

 5.

 6.

 7.


 8.

 9.

- 10._____ 11.____
 - 12._____
 - 13._____ 14._____
 - 15._____
 - 16._____
 - **17.** Use grid at left.
 - **18.** Use grid at left.
 - **19.** Use grid at left.

110

Date

Solve the equation. Check for extraneous solutions.

20. $4 - x = \sqrt{10 - 3x}$ **21.** $5 = -\sqrt{7y - 3}$ **22.** $2(x + 2)^{1/3} = 6$

Basketball In Exercises 23–26, use the tables below which give the points scored in each game played by the boys and girls basketball teams this season.

Boys Team	Girls Team			
56, 81, 80, 75, 48, 65, 90,	60, 72, 61, 58, 78, 65, 66,			
66, 70, 70	55, 65, 73			

- **23.** Find the mean, median, mode, range, and standard deviation for each data set.
- **24.** Interpret the data as to which team is more consistent in their scoring (use the standard deviation).
- **25.** Draw a box-and-whisker plot of the *boys* points.

26. Make a frequency distribution of the *girls* points using five intervals beginning with 55-59. Then draw a histogram of this data.

20.	
21.	
23.	
24.	
25.	Use space at left.
26.	Use space at left.

Date